
Unit 1-1�AI-DO Introduction
Lecturer�Yuan-Hsiang Lin (���)

��	���

Self-driving System Project

�

Outline
• Overview

• AI-DO Challenges

• AI-DO Rules

• Getting Started in AI-DO
�

• What are the AI Driving Olympics(AI-DO) ?
- The AI Driving Olympics (AIDO) are a set of robotics challenges

designed to exemplify the unique characteristics of data
science in the context of autonomous driving

Overview

http://docs.duckietown.org/DT19/AIDO/out/aido_overview.html

�

http://docs.duckietown.org/DT19/AIDO/out/aido_overview.html

• The Duckietown platform
- Simulation and training environment : Allows to test in

simulation before trying on the real robots.
- Remote robotariums : Try the code in controlled and

reproducible conditions.
- Physical Duckietown platform : Miniature vision-based vehicles

and cities in which the vehicles drive. The robot hardware and
environment are rigorously specified, which makes the
development extremely repeatable.

Overview

�

• The Duckietown

Overview

�

• The Duckiebot

Overview

Fisheye Camera

Chassis

Raspberry Pi 3B+

Battery

Duckietown Hut

�

• Course overview

Overview

Laptop Setup

Duckiebot Setup

Duckiebot Assembly

AI-DO Introduction

Theory

Experiment
Wheels Calibration

Lab 2
Motor Control

Motor Control

Theory

Experiment
Camera Calibration

Lane Following

Lab 3
Lane Following

Camera Calibration

Line Detection

Theory

Experiment
Object Detection

Lab 4
Object Detection

Object Detection

Theory

Experiment

Line Filter

�

Raspberry Pi
Introduction

ROS Introduction

Lab 1
Environment Setup

AI-DO Challenges
• Overview of challenges

- Lane Following (LF)

- Lane Following with Vehicles (LFV)

- Lane Following with Vehicles and Intersections (LFVI)

�

AI-DO Challenges
• Lane Following (LF)

- Control of a Duckiebot to drive on the right lane on streets
within Duckietown without other moving Duckiebots present

http://docs.duckietown.org/DT19/AIDO/out/lf.html

�

http://docs.duckietown.org/DT19/AIDO/out/lf.html

AI-DO Challenges
• Lane Following with Vehicles(LFV)

- Control of a Duckiebot to drive on the right lane on streets
within Duckietown with other moving Duckiebots and static
obstacles present

http://docs.duckietown.org/DT19/AIDO/out/lf_v.html
��

http://docs.duckietown.org/DT19/AIDO/out/lf_v.html

AI-DO Challenges
• Lane Following with Vehicles and Intersections(LFVI)

- Control of a Duckiebot to drive on the right lane and through
intersections on streets with Duckietown with other moving
Duckiebots and static obstacles

http://docs.duckietown.org/DT19/AIDO/out/lf_v_i.html
��

http://docs.duckietown.org/DT19/AIDO/out/lf_v_i.html

AI-DO Rules
• Performance Objective

- Measures the traveled distance by the integral of speed
• Traffic Law Objective

- Follow the traffic laws in Duckietown
• Comfort Objective

- To achieve smoother driving in Duckietown

��

AI-DO Rules
• Performance Objective

- We choose the integrated speed !(") along the road (not
perpendicular to it) over time of the Duckiebot. This measures
the moved distance along the road per episode, where we fix
the time length of an episode. This encourages both faster
driving as well as algorithms with lower latency. An episode is
used to mean running the code from a particular initial
configuration

��

#$%&' (" = *
+

,
−! " ."

AI-DO Rules
• Performance Objective

- The integral of speed is defined over the traveled distance of an
episode up to time ! = "_#$%, where "_#$% is the length of an
episode

- The way we measure this is in units of “tiles traveled”:

��

&'()* + ! = # of tiles traveled

AI-DO Rules
• Traffic Law Objective

- Quantification of “Staying in the lane”

- Quantification of “Keep safety distance”

- Quantification of “Avoiding collisions”

- Hierarchy of rules

��

AI-DO Rules
• Traffic Law Objective : Quantification of “Staying in the

lane”
- The Duckietown traffic laws say : The vehicle must stay at all

times in the right lane, and ideally near the center of the right
lane

- We quantify this as follows: let !(") be the absolute
perpendicular distance of the center of mass the Duckiebot
body from the middle of the right lane, such that !(")=0
corresponds to the robot being in the center of the right lane at
a given instant. While !(") stays within an acceptable range no
cost is incurred

��

AI-DO Rules

• Traffic Law Objective : Quantification of “Staying in the

lane”

- When the safety margin !"#$% is violated, cost starts

accumulating proportionally to the square of !(') up to an

upper bound !)#*. If this bound is violated a lump penalty + is

incurred

- The “stay-in-lane” cost function is therefore defined as :

��

,-./0 1 = 3
4

-567
8

0
:;(1)<
=

; 1 < ;?@AB
;?@AB ≤ ;(1) ≤ ;D@E

;(1) > ;D@E

AI-DO Rules
• Traffic Law Objective : Quantification of “Staying in the

lane”
- An example situation where a Duckiebot does not stay in the

lane is shown in figure

��

AI-DO Rules
• Traffic Law Objective : Quantification of “Keep safety

distance”
- The Duckietown traffic laws say : Each Duckiebot should stay at

an adequate distance from the Duckiebot in front of it, on the
same lane, at all times

��

AI-DO Rules
• Traffic Law Objective : Quantification of “Keep safety

distance”
- We quantify this rule as follows: Let !(") denote the distance

between the center of mass of the Duckiebot and the center of
mass of the closest Duckiebot in front of it which is also in the
same lane. Furthermore let !_#$%& denote a cut-off distance
after which a Duckiebot is deemed “far away”. Let ' denote a
scalar positive weighting factor

��

()*+, " = .
/

0
' 1 max(0, ! " − !9:;<)>

AI-DO Rules
• Traffic Law Objective : Quantification of “Avoid

collisions”
- The Duckietown traffic laws say: At any time a Duckiebot shall

not collide with a duckie, Duckiebot or object

��

AI-DO Rules
• Traffic Law Objective : Quantification of “Avoid

collisions”
- The vehicle is penalized by ! if within a time interval of

length "_# "∈[","+"_#) the distance ℓ(") between the vehicle and
a nearby duckie, object or other vehicle is zero or near zero. ℓ(")
denotes the perpendicular distance between any object and the
Duckiebot rectangular surface. The collision cost objective
therefore is

��

%&'() " =+
,-
./∃,∈[,',-,,)ℓ(,)67

AI-DO Rules
• Traffic Law Objective : Quantification of “Avoid

collisions”
- where ! is the penalty constant of the collision
- Time intervals are chosen to allow for maneuvering after

collisions without incurring further costs
- An illustration of a collision is displayed in figure

��

AI-DO Rules
• Traffic Law Objective : Hierarchy of Rules

- To account for the relative importance of rules, the factors
!,",#,$,% of the introduced rules will be weighted relatively to
each other

- Letting > here denote “more important than”, we define the
following rule hierarchy :

I.e.:
Collision avoidance > Stop line > Safety distance > Staying in the lane

��

'()*+ > '(),- > '(),. > '()/0

AI-DO Rules
• Comfort Objective

- In the single robot setting, we encourage “comfortable” driving
solutions. We therefore penalize large angular deviations from
the forward lane direction to achieve smoother driving. This is
quantified through changes in Duckiebot angular orientation
!_("#$($)) with respect to the lane driving direction

��

AI-DO Rules
• Comfort Objective

- Good angle metric : As a comfort objective, we measure the
average absolute squared changes in angular orientation
of !"#$($) over time

��

%&'()/()+($) =
1
$ 01

2
!342(2)

5 6$

AI-DO Rules
• Comfort Objective

- Valid direction metric : As an additional pointer we calculate the
fraction of times the Duckiebot has a “good” angular heading
or valid direction. Where !"##$ corresponds to an angle of 20
degrees (converted to radians)

��

%&'()*
)*&

+ = 1
+ ./

0
1 2345 5 627448 $+

Getting Started in AI-DO
• Get the needed accounts

- Docker hub account. Create an account here
- Duckietown account. Create an account here

• Software requirements
- Python 3.6 or higher
- Ubuntu 18.04
- Docker
- Git
- Duckietown Shell

��

https://hub.docker.com/
https://www.duckietown.org/research/ai-driving-olympics/ai-do-register

Getting Started in AI-DO
• Make a submission :

- Check out the competition template challenge-prediction :

- Submit

- Monitor the submission

- Look at the Leaderboard here

• $ git clone https://github.com/duckietown/challenge-prediction

• $ cd challenge-prediction/predictor_last
• $ dts challenges submit

• $ dts challenges follow --submission submission ID

��

https://github.com/duckietown/challenge-prediction/tree/aido2/predictor_last
https://challenges.duckietown.org/v4/humans/challenges/aido2_simple_prediction_r1/leaderboard

References
• AI-DO Challenges

- http://docs.duckietown.org/DT19/AIDO/out/lf.html
• AI-DO Rules

- http://docs.duckietown.org/DT19/AIDO/out/measuring_performa
nce.html

• Getting Started in AI-DO
- http://docs.duckietown.org/DT19/AIDO/out/quickstart.html

��

http://docs.duckietown.org/DT19/AIDO/out/lf.html
http://docs.duckietown.org/DT19/AIDO/out/measuring_performance.html
http://docs.duckietown.org/DT19/AIDO/out/quickstart.html

Thank You

��

