
A10 RISC-V系統模擬器驗證分析

C1: RISC-V Tool Chain

C2: RSIC-V Add Custom Instruction

C3: RISC-V Profiling

C1: RISC-V Tools And System
Simulator

NTU NTUST⚫ 2

Outline

Introduction to Toolchain

Compiler

Linker

Library & Debugger

RISCV-Simulator

Spike

QEMU

Gem5

Lab

NTU NTUST⚫

Toolchain is a set of programming tools. A basic
toolchain include:

Compiler
Compiler is a tool that translate ”source code”(written by
programming language) into “target language”.

Linker
Linker can link “target file”(from compiler) and “libraries”
together and generate an executable file.

Library
Libraries is a collection of sub-functions that already
compiled. Provide service to other program.

Debugger
To test and debug the target programs.

3

What is toolchain?

Note: For different machine(CPU) need different toolchain.

Because CPU has many different type and commands.

NTU NTUST⚫

Introduction

4

The advantage to use the simulator:
Complete computer architecture without having a
hardware
Reduce time taken by development
Get more data between the variables to improve the
hardware design
Compare with the different architectures and find the best
one to keep the cost down
Enable to simulate complicated system whether it is exist
or not

Simulator
Spike - golden reference simulator
QEMU - open source full-system simulator
Gem5 - modular platform simulator

NTU NTUST⚫

Step1: Set environment variable
& PATH

5

$ echo “export RISCV=/path/to/install/riscv/toolchain”>> ~/.bashrc

$ echo “export PATH=$RISCV/bin:$PATH” >> ~/.bashrc

$ source ~/.bashrc

if ! shopt -oq posix; then

if [-f /usr/share/bash-completion/bash_completion]; then

. /usr/share/bash-completion/bash_completion

elif [-f /etc/bash_completion]; then

. /etc/bash_completion

fi

fi

export RISCV=/home/riscv/RISCV

export PATH=/home/riscv/RISCV/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin……

Setting variables “RISCV” and “PATH”.
“RISCV” is a path that you want to create toolchain.

You will see the text added in the end of “.bashrc”

Note: You can reopen terminal instead enter the command ”source ~/.bashrc”.

NTU NTUST⚫

Step2: Build RISC-V Toolchain

6

$ cd riscv-gnu-toolchain

$./configure --prefix=$RISCV

$ make -j3

make[3] Leaving directory '/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc newlib-

stage2/gcc '

make[2]: Leaving directory '/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc- newlib-

stage2 '

make[1]: Leaving directory '/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc- newlib-

stage2 '

mkdir -p stamps/ && touch stamps/build-gcc-newlib-stage2

Start building toolchain

Note : the number of make –j(N+1) is base on your CPU cores N

Using virtual machine or less cores will spend more
time on this step.
After the process you will see the result:

NTU NTUST⚫

Step3: Build Simulate
Environment

7

$ cd .. (back to riscv-tools)

$./build-spike-pk.sh

Installing project riscv-isa-sim

mkdir /home/tf/riscv/include/fesvr

mkdir /home/tf/riscv/lib/pkgconfig

Installing project riscv-pk

mkdir /home/tf/riscv/riscv64-unknown-elf/include/riscv-pk

mkdir /home/tf/riscv/riscv64-unknown-elf/lib/riscv-pk

RISC-V Toolchain installation completed!

Build a simulate environment base on this RISC-V
CPU by Spike.

After waiting you may see this result:

NTU NTUST⚫

Common Workflow (1/2)

8

Add .c file at any location, then compile it with
riscv64-unknown-elf-gcc or riscv64-unknown-elf-g++

Use -o to specify the name of the output binary file

//hello.c

#include <stdio.h>

int main(){

printf(“Hello World!!\n”);

return 0;

}

$ riscv64-unknown-elf-gcc hello.c -o hello

riscv@riscv-VirtualBox:~$ riscv64-unknown-elf-gcc hello.c -o hello

riscv@riscv-VirtualBox:~$ dir

hello.c hello

NTU NTUST⚫

Common Workflow (2/2)

9

$ spike pk hello

bbl loader

Hello World!!  Result

After compilation, we want to know verify the
correctness of our program
Run the compiled program with Spike and you
can see the result

Spike also support debug mode like gdb

C2: Add Instructions

NTU x NTUST

Outline
Benefits of adding custom instructions

Adding Custom Instruction to RISC-V

Introduce of workflow

Verify the result

Adding Custom Instructions on software

Basic Workflow

Verify the result

11

NTU x NTUST

Benefits of adding custom instructions

Custom instructions are a key value proposition of

RISC-V.

The key challenge in here is to optimize instructions.

In real design, flow for optimizing custom instructions

in RISC-V processors is being used.

In some specific case, using custom instructions can

boost the performance of RISC-V.

12

NTU x NTUST

Common Workflow

First, we need to recognize the steps of adding
instruction. Basically we are target our specific
program. And add an unique instruction for it.

1.Decide instruction

Define the type and opcode

2.modify .v files

This step is about to introduce how to modify and
what .v files we are going to modify.

3. Check control signal

There might be some changes in control signals, we
need to check it to see if it’s right.

4. Test new instruction

Using testfile to test new instructions.

13

NTU x NTUST

Result

8. Verify the result.

14

NTU x NTUST

Common Workflow

After checking instructions in hardware, now we
are able to put them into software and profile it.

5. Define your instruction and its functionality

This step is about to define your instruction clearly,
and how it works.

6. Assign an unused opcode for it

Opcode is the portion that specifies the operation to
be performed.

7. Modify the toolchain and software

Build instruction into gnu-toolchain and software.

8. Verify the result

Execute the program and profile it.

15

NTU x NTUST

Check(1/2)

12. To verify you Adding the mod Instruction
to RISC-V ISA, you can try for the following C
code:

13. Compile it and see the result.

16

#include <stdio.h>

int main(){

int a,b,c;

a = 5;

b = 2;

asm volatile(

"mod %0, %1, %2\n\t"

: "=r" (c)

: "r" (a),"r" (b)

);

if (c != 1){

printf("\n[FAILED]\n");

return -1;

}

printf("\n[PASSED]\n");

return 0;

}

NTU x NTUST

Check(2/2)

You can also inspect the output binary file.

17

$ riscv64-unknown-elf-objdump –dC mod > mod.dump

$ vim mod.dump (or $nano mod.dump)

C3: Profiling

NTU x NTUST

Outline

What is Profiling

Why Profiling

Basic Workflow

Example for Lab

19

NTU x NTUST

What is Profiling

Profiling allows you to learn where your program
spent its time and which functions called which
othere functions while it was executing.

Profiler provides information that can show you
which pieces of your program are slower than you
expected, and might be candidates for rewriting to
make your program execute faster –
Program Optimization

20

NTU x NTUST

Why Profiling

A program that hasn't been optimized will
normally spend most of its CPU cycles in
some particular functions.

If we want to improve performance of our
program without tools. It will take a lot of
time. So we need some tools to help us to
find the performance problem.

Why we need Profiling?

1. Understand our code behavior.

2. Find the bottleneck of our code.

3. Improve performance of our code.

21

NTU x NTUST

Basic Workflow

First, there are a few steps we need to know
about profiling:

1. Using profiler
Use the profiler to obtain the information that we

need to optimize our program.

2. Modify our program
Change our code according to the information

provided by the profiler.

3. Verify our result.
Confirm the program result and the execution time.

4. repeat step 1 ~ step 3
repeat these steps until the program has optimized

well enough.

22

NTU x NTUST

C++ Profiling Example (1/2)

In this part, we will focus on adding custom
instruction to improve our performance and we will
use SHA256 program as an example.

1. Prepare the code.(main.cpp, sha256.h,
sha256.cpp)

Code Reference :
http://www.zedwood.com/article/cpp-sha256-
function

23

$ mkdir sha256 && cd sha256

$ gedit main.cpp

$ gedit sha256.h

$ gedit sha256.cpp

NTU x NTUST

C++ Profiling Example (2/2)

2. Decode gmon.out file using flat-profile mode.

Result :

We can find out that the function “transform”
have taken the most time, so we can take a
look at the function first.

24

$ riscv64-unknown-linux-gnu-gprof sha256 gmon.out -p

NTU x NTUST

Add curl into SHA256

3. Add curl instruction and use flat-profile mode.

We can find out that the self seconds of
“transform”, “SHA256_F1”, “SHA256_F2”
have decreased.

25

$ riscv64-unknown-linux-gnu-gprof sha256 gmon.out -p

