b4 RISC

A10 RISC-VA #iiE Bz i8 8 24T
C1l: RISC-V Tool Chain

C2: RSIC-V Add Custom Instruction
C3: RISC-V Profiling

r=11] o

b4 RISC

C1l: RISC-V Tools And System
Simulator

Outline

B Introduction to Toolchain

E Compiler
E Linker
F Library & Debugger

B RISCV-Simulator
E Spike
F QEMU
F Gem5

E Lab

NTU @ NTUST 2

What is toolchain?

Toolchain is a set of programming tools. A basic
toolchain include:

B Compiler
B Compiler is a tool that translate “source code”(written by
programming language) into “target language”.
B Linker

B Linker can link “target file”(from compiler) and “libraries”
together and generate an executable file.

B Library

B Libraries is a collection of sub-functions that already
compiled. Provide service to other program.

B Debugger
B To test and debug the target programs.

Note: For different machine(CPU) need different toolchain.
Because CPU has many different type and commands.

Introduction

B The advantage to use the simulator:
B Complete computer architecture without having a
hardware
F Reduce time taken by development
F Get more data between the variables to improve the
hardware design
¥ Compare with the different architectures and find the best
one to keep the cost down
B Enable to simulate complicated system whether it is exist
or not
B Simulator
B Spike - golden reference simulator
F QEMU - open source full-system simulator
B Gem5 - modular platform simulator

NTU @ NTUST 4

Stepl: Set environment variable

& PATH

B Setting variables "RISCV"” and “"PATH".

B "RISCV” is a path that you want to create toolchain.

$ echo “export RISCV=/path/to/install/riscv/toolchain’>> ~/.bashrc
$ echo “export PATH=$RISCV/bin:SPATH” >> ~/.bashrc
$ source ~/.bashrc
Note: You can reopen terminal instead enter the command “source ~/.bashrc”.

B You will see the text added in the end of “.bashrc”

if I shopt -oq posix; then
if [-f /usr/share/bash-completion/bash_completion]; then
. lusr/share/bash-completion/bash_completion
elif [-f /etc/bash_completion]; then
. letc/bash_completion

fi
fi
export RISCV=/home/riscv/RISCV
export PATH=/home/riscv/RISCV/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

NTU @ NTUST 5

Step2: Build RISC-V Toolchain
B Start building toolchain

$ cd riscv-gnu-toolchain
$./configure --prefix=$RISCV
$ make -j3
Note : the number of make —j(N+1) is base on your CPU cores N
B Using virtual machine or less cores will spend more

time on this step.
B After the process you will see the result:

make[3] Leaving directory ‘/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc newlib-
stage2/gcc
make[2]: Leaving directory ‘'/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc- newlib-

stage2 '

make[1]: Leaving directory ‘/home/tf/riscv-tools/riscv-gnu-toolchain/build-gcc- newlib-
stage2 '

mkdir -p stamps/ && touch stamps/build-gcc-newlib-stage?2

NTU @ NTUST 6

Step3: Build Simulate

Environment
B Build a simulate environment base on this RISC-V
CPU by Spike.

$ cd .. (back to riscv-tools)
$./build-spike-pk.sh

B After waiting you may see this result:

Installing project riscv-isa-sim
mkdir /nome/tf/riscv/include/fesvr
mkdir /nome/tf/riscv/lib/pkgconfig

Installing project riscv-pk
mkdir /nome/tf/riscv/riscv64-unknown-elf/include/riscv-pk
mkdir /home/tf/riscv/riscv64-unknown-elf/lib/riscv-pk

RISC-V Toolchain installation completed!

NTU @ NTUST 7

Common Workflow (1/2)

B Add .c file at any location, then compile it with
riscve4-unknown-elf-gcc or riscv64-unknown-elf-g++

/[hello.c

#include <stdio.h>

iInt main(){
printf("Hello World!"\n");
return O;

}

$ riscv64-unknown-elf-gcc hello.c -0 hello

B Use -0 to specify the name of the output binary file

riscv@riscv-VirtualBox:~$ riscv64-unknown-elf-gcc hello.c -o hello

riscv@riscv-VirtualBox:~$ dir
hello.c hello

NTU @ NTUST 8

Common Workflow (2/2)

B After compilation, we want to know verify the
correctness of our program

B Run the compiled program with Spike and you
can see the result

$ spike pk hello

bbl loader
Hello World!!

B Spike also support debug mode like gdb

NTU @ NTUST 9

b RISC

C2: Add Instructions

Outline
B Benefits of adding custom instructions
B Adding Custom Instruction to RISC-V

B Introduce of workflow

F Verify the result

B Adding Custom Instructions on software
B Basic Workflow

B Verify the result

NTU x NTUST 17

Benefits of adding custom instructions

B Custom instructions are a key value proposition of
RISC-V.

B The key challenge in here is to optimize instructions.

B In real design, flow for optimizing custom instructions

in RISC-V processors is being used.

B In some specific case, using custom instructions can

boost the performance of RISC-V.

NTU x NTUST 12

Common Workflow

B First, we need to recognize the steps of adding
instruction. Basically we are target our specific
program. And add an unique instruction for it.
¥ 1.Decide instruction

ODefine the type and opcode
r 2.modify .v files

OThis step is about to introduce how to modify and
what .v files we are going to modify.

I 3. Check control signal

OThere might be some changes in control signals, we
need to check it to see if it's right.

I 4. Test new instruction
QUsing testfile to test new instructions.

NTU x NTUST 13

Result
B 8. Verify the result.

Your 1w instruction is correct!

Your lw instruction i3 correct!

Your add instructicn is correct!
Your sub instructicn is correct!
Your and instruction is correct!
Your beqg/or instruction is correct!
Your slt instructicn 1s correct!
Your sw/lw instructicn i3 correct!
Your jal/add instruction is correct!
Your beqﬁadd instructicn i3 correct!

#|Ycur mod instruction is :crrect!|

b e | E | e e | e | T | TR | Sl (e 1]

b Tl | S | S 1

o

rifs

= Congratulaticons!! Your design has passed all the test!!

NTU x NTUST 14

Common Workflow

B After checking instructions in hardware, now we
are able to put them into software and profile it.
F 5. Define your instruction and its functionality

QOThis step is about to define your instruction clearly,
and how it works.

I 6. Assign an unused opcode for it

QO0pcode is the portion that specifies the operation to
be performed.

F 7. Modify the toolchain and software

OBuild instruction into gnu-toolchain and software.
k 8. Verify the result

QExecute the program and profile it.

NTU x NTUST 15

Check(1/2)

B 12. To verify you Adding the mod Instruction
to RISC-V ISA, you can try for the following C

code:
#include <stdio.h> if(c!=1)
int main(){ printf("\n[FAILED]\n");
int a,b,c; return -1;
a=>5; }
b=2; printf("\n[PASSED]\n");
asm volatile(return O;
"mod %0, %1, %2\n\t" }
:"=r" (c)
:'r" (a),"r" (b)
);

B 13. Compile it and see the result.

riscv@riscv-VirtualBox:~/riscv-code$ riscvé4-unknown-elf-gcc mod.c -o mod
riscv@riscv-VirtualBox:~/riscv-code$ spike pk mod

NTU x NTUST

Check(2/2)

B You can also inspect the output binary file.

$ riscv64-unknown-elf-objdump —dC mod > mod.dump
$ vim mod.dump (or $nano mod.dump)

00000000000101b6 <main>:

101b6: 1101 addi sp,sp,-32
101b8: ec06 sd ra,24(sp)
101ba: e822 sd s0,16(sp)
101bc: 1000 addi s@,sp,32
101be: 4795 11 as.5
101cO: fef42623 Sw a5,-20(s0)
101c4: 4789 11 a5,2
101c6: fef42423 SW a5,-24(s0)
101ca: fec42783 w a5,-20(s0)
101ce: fe842703 . 34 _24(c(
101d2: 02e787eb
101d6: fef42223 " oo, 28 oY
101da: fe442783 lw a5,-28(s0)
101de: 0007871b sext.w a4,as
101e2: 4785 [& - a5,1

NTU x NTUST 17

b RISC

C3: Profiling

Outline

B What is Profiling
B Why Profiling
B Basic Workflow

B Example for Lab

NTU x NTUST 19

What is Profiling

B Profiling allows you to learn where your program
spent its time and which functions called which
othere functions while it was executing.

B Profiler provides information that can show you
which pieces of your program are slower than you
expected, and might be candidates for rewriting to
make your program execute faster —

Program Optimization

9%
14%
i 22%

NTU x NTUST 20

Why Profiling

E A program that hasn't been optimized will
normally spend most of its CPU cycles in
some particular functions.

B If we want to improve performance of our
program without tools. It will take a lot of
time. So we need some tools to help us to
find the performance problem.

B Why we need Profiling?

¥ 1. Understand our code behavior.
k 2. Find the bottleneck of our code.

® 3. Improve performance of our code.

NTU x NTUST 217

Basic Workflow

B First, there are a few steps we need to know
about profiling:
F 1. Using profiler

Use the profiler to obtain the information that we
need to optimize our program.

I 2. Modify our program
Change our code according to the information
provided by the profiler.

k 3. Verify our result.
Confirm the program result and the execution time.

I 4. repeatstep 1 ~step 3
repeat these steps until the program has optimized
well enough.

NTU x NTUST 22

C++ Profiling Example (1/2)

B In this part, we will focus on adding custom
instruction to improve our performance and we will
use SHA256 program as an example.

B 1. Prepare the code.(main.cpp, sha256.h,
sha256.cpp)

$ mkdir sha256 && cd sha256
$ gedit main.cpp

$ gedit sha256.h

$ gedit sha256.cpp

P Code Reference :

http://www.zedwood.com/article/cpp-sha256-
function

NTU x NTUST 23

C++ Profiling Example (2/2)
B 2. Decode gmon.out file using flat-profile mode.
$ riscv64-unknown-linux-gnu-gprof sha256 gmon.out -p

B Result :

time seconds seconds calls s/call s/call name

36.51 12.160 12.16 viprintf

I 28.36 21.50 9.40 1000001 0.00 0.00 5HH256::tranﬂfcrm{unﬁignel
unsigned int)
9.11 24.52 3.02 VsSprintr
3.98 25.84 1.32 640000064 0.00 0. SHA256 Fl(unsigned int)
3.95 27.15 1.31 1000001 0.00 0. sha256(std:: cxx11::basi
std::char_traits<char=, std::allocator<char= =)
3.74 28.39 1.24 64000064 0.00 0. SHA256 F2(unsigned int)
2.81 29.32 .93 _I0 no_init
2.35 30.10 6.78 48000048 - - SHA256 F4(unsigned int)
2.26 30.85 .75 48000048 . . SHA256 F3(unsigned int)

B We can find out that the function “transform”
have taken the most time, so we can take a
look at the function first.

NTU x NTUST 24

Add curl into SHA256

B 3. Add curl instruction and use flat-profile mode.

$ riscv64-unknown-linux-gnu-gprof sha256 gmon.out -p

% cumulative self total

time seconds seconds calls s/call name

L e WP L e W LD e WD ?I7FI ;.IILIi

21.89 20.04 7.02 1000001 c 0.00 SHA256::transform{unsigr
unsigned int)

7.67 22.50 2.46 vsprintf

4.58 23.97 1.47 64000064 0.00 c SHA256 F1({unsigned int)

4.49 25.41 1.44 640000064 0.00 c SHA256 F2{(unsigned int)
.1l L0 . M4 I I lvlvlvlv N} (v v L J . DL 2Nd£Lo20STO. s CXX11l: .Das
std::char_traits<char=, std::allocator<char> =)

3.80 27.96 1.22 48000048 0.00 c SHA256_F4(unsigned int)

T 29.17 1.21 48000048 0.00 c SHA256_F3(unsigned int)

.53 29.98 0.81 _I0 no_init

.12 30.66 0.68 _I0 str_init _static_ 1inte
. 4 - - -

B We can find out that the self seconds of
“transform”, "SHA256_F1”, "SHA256_F2"
have decreased.

NTU x NTUST 25

